DEBRA THANA SAHID KSHUDIRAM SMRITI MAHAVIDYALAYA

Gangaram Chak, Chak Shyampur, Debra, West Bengal

PROPOSED SYLLABUS (DRAFT) OF

BACHELOR OF SCIENCE WITH MATHEMATICS (MULTIDISCIPLINARY STUDIES)

3 – YEAR UNDERGRADUATE PROGRAMME

(w.e.f. Academic Year 2024-2025)

Based on

Curriculum & Credit Framework for Undergraduate Programmes (CCFUP), 2023 & NEP, 2020

SEMESTER – 1

Course		Course Code Course Title Course Details			L-T-P		Marks Distribution			
Туре	Course Code			Course Details		Credit	IA	CA	ESE	Total
		Coloulus Coomotry &	Unit I	Differential Calculus					60	75
MAJOR-01	UG/I/MATH/	Calculus, Geometry & Ordinary Differential	Unit II	Integral Calculus	3-1-0 4	1	10	5		
(Disc. - A1)	3/MJ-A1T	Equation	Unit III Geometry	Geometry			5			
			Unit IV	Ordinary Differential Equations						
SEC-01	UG/I/MATH/ 3/SE-1P	MATLAB -1		MATLAB -1	0-0-6	3	5	5	30	40
			Unit I		3-1-0				60	75
MINOR-01 (Disc. – C1)	UG/I/MATH/	Calculus, Geometry & Ordinary Differential	Unit II			4	10	5		
	3/MI-C1T	3/MI-CII Equation Unit III Geometry	Unit III	Geometry				5		
			Ordinary Differential Equations]						

MJ = Major, MI = Minor Course, SEC = Skill Enhancement Course, CA= Continuous Assessment, ESE= End Semester Examination, L-T-P = Lecture-Tutorial-Practical

MAJOR (MJ)

UG/I/MATH/3/MJ-A1T: Calculus, Geometry & Ordinary Differential Equations

Credits 04, Full Marks: 75

Course contents:

UNIT-1 (Differential Calculus):

Higher order derivatives, Leibnitz rule, and its applications to problems of type $e^{ax+b \sin x}$, $e^{ax+b \cos x}$, $(ax + b)^n \sin x$, $(ax + b)^n \cos x$, Hyperbolic functions; Concavity and inflection points; Curvature; Envelopes; Asymptotes; Curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves; L' Hospital's rule; Applications in business, economics, and life sciences.

UNIT-2 (Integral Calculus):

Reduction formulae, derivations, and illustrations of reduction formulae of the type $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, $\int \tan^n x \, dx$, $\int \sec^n x \, dx$, $\int (\log x)^n dx$, $\int \sin nx \sin mx \, dx$; Parametric equations; Parameterizing a curve; Arc length of a curve, arc length of parametric curves; area under a curve; area and volume of surface of revolution,

UNIT-3 (Geometry):

Geometry 2D

Reflection properties of conics, rotation of axes, and second-degree equations; Classification of conics using the discriminant, canonical form of a conic; Polar equations of conics.

Geometry 3D

Recapitulation of the coordinate system, Plane and Straight Line, Tangent and Normal; Spheres; Cylindrical surfaces; Central conicoids; Paraboloids; Plane sections of conoids; Generating lines; Classification of quadrics

UNIT-4 (Ordinary Differential Equations):

General, Particular, Explicit, Implicit, and Singular solutions of a Differential equation; First order but not first-degree differential equation; Exact differential equations and integrating factors, and equations reducible to this form; Linear equation; Bernoulli equation and special integrating factors and transformations.

UG/I/MATH/3/MJ-A1T: Calculus, Geometry & Ordinary Differential Equations

٠

		QUESTION PATTERN				
UNIT	Marks	Mark of each question	Number of Questions to be attempted			
UNIT-I (Differential Calculus)	16	2	3			
	10	10	1			
UNIT II (Internal Calculus)	1 /	2	2			
UNIT-II (Integral Calculus)	14	5	2			
		2	3			
UNIT-III (Geometry)	21	5	1			
		10	1			
UNIT-IV (Ordinary Differential	9	2	2			
Equations)	9	5	1			

- 1. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 2. M.J. Strauss, G.L. Bradley and K. J. Smith, Calculus, 3rd Ed., Dorling Kindersley (India) P. Ltd. (Pearson Education), Delhi, 2007.
- 3. H. Anton, I. Bivens and S. Davis, Calculus, 7th Ed., John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.
- 4. R. Courant and F. John, Introduction to Calculus and Analysis (Volumes I & II), Springer- Verlag, New York, Inc., 1989.
- 5. G. F. Simmons, Differential Equations, Tata Mcgraw Hill.
- 6. S. Goldberg, Calculus and mathematical analysis.
- 7. S. K. Mapa, Introduction to Real Analysis, 8th Edition, Sarat Book House, 2014.
- 8. Maity & Ghosh, An Introduction to Analysis (Differential Calculus), New Central Book Agency (P) Limited.
- 9. Maity & Ghosh, An Introduction To Differential Equations, New Central Book Agency (P) Limited.
- 10. Chakravorty & Ghosh, Advance Analytical Geometry, U. N. Dhur & Sons Private Limited.
- 11. A. N. Das, Analytical Geometry of Two and Three Dimensions, New Central Book Agency (P) Limited.
- 12. Mukharjee & Bej, Analytic Geometry of Two & Three Dimensions (Advanced Level), Books and Allied (P) Ltd.
- 13. R. M. Khan, Analytical Geometry and Vector Algebra, New Central Book Agency (P) Limited.
- 14. K. C. Pal, Analytic Geometry including Vector Analysis, Books and Allied (P) Ltd.
- 15. Maity and Ghosh, An Introduction To Analysis (integral Calculus), New Central Book Agency (P) Limited.
- 16. D.A. Murray, Introductory Course In Differential Equations, Orient Longman Limited.
- 17. Shepley L. Ross, Differential Equations, 3rd Ed, Wiley India Pvt. Limited.
- 18. Chakravorty and Ghosh, Differential Equations, U. N. Dhur & Sons Private Limited.
- 19. Tom M. Apostol, Calculus (Vol I and Vol II), Wiley India Pvt. Limited.

SKILL ENHANCEMENT COURSE (SEC)

UG/I/MATH/3/SE-1P: MATLAB-1

Credits 03, Full Marks: 50

Course Outline:

MATLAB interface, data types, variables, Flow control statements, arrays: creating, indexing, operations, Matrix creating, indexing, operations, Input and output function, Mathematical library functions, user-defined function: anonymous function.

Plotting of two-dimensional functions, Graph plotting, Graph formatting (title, axis, line styles, colors, etc.), multiple plots, matrix plots, polar plots, 3D plotting (line, surface, mesh, and contour) of three-dimensional functions.

- I. Find the sum, product, max, min of a list of number in an array, in a sub-array without library function.
- II. Find a sub-matrix of the given matrix.
- III. Find the column sum, product, max, min of the given matrix without library function.
- IV. Find the row sum, product, max, min of the given matrix without library function.
- V. Define any transcendental function and then find and show the table of its functional values.

VI. Plotting of graph of functions e^{ax+b} , $\log(ax + b)$, $\log \frac{1}{ax+b}$, $\sin(ax + b)$, $\cos(ax + b)$, |ax + b| and to illustrate the effect of a and b on the graph.

VII. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.

VIII.Sketching parametric curves (eg. trochoid, cycloid, epicycloids, hypocycloid).

- IX. Tracing of conics in cartesian coordinates/ polar coordinates.
- X. Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using cartesian coordinates.

UG/I/MATH/3/SE-1P: MATLAB -1

٠

			QUESTI	ON PATTERN
Marks	Note Book	Viva	Mark of each Question	Number of Questions to be attempted
40	5	5	10	3

*Selection of questions for practical examination shall solely be made on lottery basis in the presence of external examiners.

- 1. Etter, Delores M., Introduction to MATLAB for Engineers and Scientists, Prentice-Hall.
- 2. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Oxford University Press.
- 3. A. Gilat, MATLAB: an Introduction with Applications, New York: Wiley.
- 4. Fausett, Laurene, Applied Numerical Analysis Using MATLAB, Prentice-Hall.
- 5. J. P. William, Introduction to MATLAB for Engineers, New York: McGraw-Hill.
- 6. C. Lopez, MATLAB programming for numerical analysis, Apress; 2014.

MINOR (MI)

UG/I/MATH/3/MI-C1T: Calculus, Geometry & Ordinary Differential Equations

Credits 04 , Full Marks: 75

Course contents:

UNIT-1 (Differential Calculus):

Higher order derivatives, Leibnitz rule, and its applications to problems of type $e^{ax+b\sin x}$, $e^{ax+b\cos x}$, $(ax + b)^n \sin x$, $(ax + b)^n \cos x$, Hyperbolic functions; Concavity and inflection points; Curvature; Envelopes; Asymptotes; Curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves; L' Hospital's rule; Applications in business, economics, and life sciences.

UNIT-2 (Integral Calculus):

Reduction formulae, derivations, and illustrations of reduction formulae of the type $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, $\int \tan^n x \, dx$, $\int \sec^n x \, dx$, $\int (\log x)^n dx$, $\int \sin nx \sin mx \, dx$; Parametric equations; Parameterizing a curve; Arc length of a curve, arc length of parametric curves; area under a curve; area and volume of surface of revolution,

UNIT-3 (Geometry):

Geometry 2D

Reflection properties of conics, rotation of axes, and second-degree equations; Classification of conics using the discriminant, canonical form of a conic; Polar equations of conics.

Geometry 3D

Recapitulation of the coordinate system, Plane and Straight Line, Tangent and Normal; Spheres; Cylindrical surfaces; Central conicoids; Paraboloids; Plane sections of conoids; Generating lines; Classification of quadrics

UNIT-4 (Ordinary Differential Equations):

General, Particular, Explicit, Implicit, and Singular solutions of a Differential equation; First order but not first-degree differential equation; Exact differential equations and integrating factors, and equations reducible to this form; Linear equation; Bernoulli equation and special integrating factors and transformations.

UG/I/MATH/3/MI-C1T: Calculus, Geometry & Ordinary Differential Equations

٠

		QUESTION PATTERN				
UNIT	Marks	Mark of each question	Number of Questions to be attempted			
UNIT-I (Differential Calculus)	16	2	3			
		10	1			
UNIT-II (Integral Calculus)	14	2	2			
OINTI-II (IIItegrai Calculus)	14	5	2			
		2	3			
UNIT-III (Geometry)	21	5	1			
		10	1			
UNIT-IV (Ordinary Differential	9	2	2			
Equations)	9	5	1			

- 1. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.
- 2. M.J. Strauss, G.L. Bradley and K. J. Smith, Calculus, 3rd Ed., Dorling Kindersley (India) P. Ltd. (Pearson Education), Delhi, 2007.
- 3. H. Anton, I. Bivens and S. Davis, Calculus, 7th Ed., John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.
- 4. R. Courant and F. John, Introduction to Calculus and Analysis (Volumes I & II), Springer- Verlag, New York, Inc., 1989.
- 5. G. F. Simmons, Differential Equations, Tata Mcgraw Hill.
- 6. S. Goldberg, Calculus and mathematical analysis.
- 7. S. K. Mapa, Introduction to Real Analysis, 8th Edition, Sarat Book House, 2014.
- 8. Maity & Ghosh, An Introduction to Analysis (Differential Calculus), New Central Book Agency (P) Limited.
- 9. Maity & Ghosh, An Introduction To Differential Equations, New Central Book Agency (P) Limited.
- 10. Chakravorty & Ghosh, Advance Analytical Geometry, U. N. Dhur & Sons Private Limited.
- 11. A. N. Das, Analytical Geometry of Two and Three Dimensions, New Central Book Agency (P) Limited.
- 12. Mukharjee & Bej, Analytic Geometry of Two & Three Dimensions (Advanced Level), Books and Allied (P) Ltd.
- 13. R. M. Khan, Analytical Geometry and Vector Algebra, New Central Book Agency (P) Limited.
- 14. K. C. Pal, Analytic Geometry including Vector Analysis, Books and Allied (P) Ltd.
- 15. Maity and Ghosh, An Introduction To Analysis (integral Calculus), New Central Book Agency (P) Limited.
- 16. D.A. Murray, Introductory Course In Differential Equations, Orient Longman Limited.
- 17. Shepley L. Ross, Differential Equations, 3rd Ed, Wiley India Pvt. Limited.
- 18. Chakravorty and Ghosh, Differential Equations, U. N. Dhur & Sons Private Limited.
- 19. Tom M. Apostol, Calculus (Vol I and Vol II), Wiley India Pvt. Limited.

SEMESTER – 2

Course					L-T-P		Marks Distribution						
Туре	Course Code	Course Title		Course Details		Credit	IA	CA	ESE	Total			
		Calculus,	Unit I	Differential Calculus									
MAJOR-01	UG/I/MATH/3	Geometry &	Unit II	Integral Calculus					60				
(Disc. – B1)		Ordinary Differential Equation	Unit III	Geometry	3-1-0	4	10	5		75			
			Unit IV	Ordinary Differential Equations									
SEC-02	UG/I/MATH/3 /SE-2P	MATLAB -2		MATLAB – 2	0-0-6	3	5	5	30	40			
						Unit I	Classical Algebra						
MINOR-02	UG/I/MATH/3	Algebra Chit II 2000 the Integers	Sets and Integers	3-1-0 4	4	10	5	60	75				
	/MI-C2T		Unit III	System of Linear Equations									
			Unit IV	Linear Transformation and Eigenvalues									
MJ = Major,	MJ = Major, MI = Minor Course, SEC = Skill Enhancement Course, CA= Continuous Assessment, ESE= End Semester Examination, L-T-P												

= Lecture-Tutorial-Practical

MAJOR (MJ)

UG/I/MATH/3/MJ-B1T: Calculus, Geometry & Ordinary Differential Equations

Credits 04, Full Marks: 75

Course contents:

UNIT-1 (Differential Calculus):

Higher order derivatives, Leibnitz rule, and its applications to problems of type $e^{ax+b\sin x}$, $e^{ax+b\cos x}$, $(ax + b)^n \sin x$, $(ax + b)^n \cos x$, Hyperbolic functions; Concavity and inflection points; Curvature; Envelopes; Asymptotes; Curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves; L' Hospital's rule; Applications in business, economics, and life sciences.

UNIT-2 (Integral Calculus):

Reduction formulae, derivations, and illustrations of reduction formulae of the type $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, $\int \tan^n x \, dx$, $\int \sec^n x \, dx$, $\int (\log x)^n dx$, $\int \sin nx \sin mx \, dx$; Parametric equations; Parameterizing a curve; Arc length of a curve, arc length of parametric curves; area under a curve; area and volume of surface of revolution,

UNIT-3 (Geometry):

Geometry 2D

Reflection properties of conics, rotation of axes, and second-degree equations; Classification of conics using the discriminant, canonical form of a conic; Polar equations of conics.

Geometry 3D

Recapitulation of the coordinate system, Plane and Straight Line, Tangent and Normal; Spheres; Cylindrical surfaces; Central conicoids; Paraboloids; Plane sections of conoids; Generating lines; Classification of quadrics

UNIT-4 (Ordinary Differential Equations):

General, Particular, Explicit, Implicit, and Singular solutions of a Differential equation; First order but not first-degree differential equation; Exact differential equations and integrating factors, and equations reducible to this form; Linear equation; Bernoulli equation and special integrating factors and transformations.

UG/I/MATH/3/MJ-B1T: Algebra

٠

		QUESTION PATTERN				
UNIT	Marks	Mark of each question	Number of Questions to be attempted			
		2	1			
UNIT – I (Classical Algebra)	22	5	2			
		10	1			
	15	2	5			
UNIT-II (Sets and Integers)	15	5	1			
		2	2			
UNIT-III (System of Linear Equations)	9	5	1			
		10	1			
UNIT-IV (Linear Transformation and Eigenvalues)	14	2	2			
(Linear Transformation and Eigenvalues)		10	1			

- 1. Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser, 2006.
- 2. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 3rd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2005.
- 3. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 4. K.B. Dutta, Matrix and linear algebra.
- 5. K. Hoffman, R. Kunze, Linear algebra.
- 6. W.S. Burnstine and A.W. Panton, Theory of equations.
- 7. Sadhan Kumar Mapa, Higher Algebra Classical, Roman Books.
- 8. Sadhan Kumar Mapa, Higher Algebra Abstract and Linear, Roman Books.
- 9. R. M. Khan, Algebra Classical, Modern, Linear and Boolean, New Central Book Agency (P) Limited.
- 10. Rao, Bhimasankaram, Linear Algebra, Hindustan Book Agency.
- 11. S. Kumaresan, Linear Algebra: A Geometric Approach, PHI Learning Pvt. Ltd.
- 12. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, Pearson Education.
- 13. Vijay K. Khanna & S. K. Bhambri, A Course In Abstract Algebra, Vikas Publishing House Pvt Limited.
- 14. Joseph A. Gallian, Contemporary Abstract Algebra, CRC Press.
- 15. Sen, Ghosh, Mukhopadhyay, Topics in Abstract Algebra, University Press (India) Private Limited.
- 16. I. N. Herstein, Topics in algebra, Wiley.
- 17. Dummit, Foote, Abstract Algebra, Wiley India Pvt. Limited.

SKILL ENHANCEMENT COURSE (SEC)

UG/I/MATH/3/SE-2P: MATLAB-2

Credits 03, Full Marks: 50

Course Outline:

Introduction to M-file: scripts and function, flow control statements, standard arrays library functions, standard matrix library functions, User-defined function: primary function, sub-function, private function, eval function, function handles, function of functions, library functions.

Importing and Exporting data, read spread sheet data, write spread sheet data, MAT-file

- I. Fitting a curve for given data.
- II. Plotting of given data: Graph plotting, multiple plots, matrix plots, polar plots, 3D plotting (line, surface, mesh, and contour) of three-dimensional data.
- III. Obtaining surface of revolution of curves.
- IV. Find the sum, product, max, min, sort of a list of number in an array, in a sub-array using library function.
- V. Find the column sum, product, max, min, sort of the given matrix using library function.
- VI. Find the row sum, product, max, min of the given matrix using library function.
- VII. Conversion of one number system to another number system among decimal, binary, octal, hexadecimal.
- VIII. Solution of a square, under determined and over determined system of linear equation.
- IX. Different problems for root, eigenvalues and eigenvectors of the matrix.
- X. Plotting of recursive sequences.
- XI. Study the convergence of sequences through plotting.
- XII. Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot.
- XIII. Study the convergence/divergence of in finite series by plotting their sequences of partial sum.
- XIV. Cauchy's root test by plotting nth roots.
- XV. Ratio test by plotting the ratio of nth and (n+1)th term.

UG/I/MATH/3/SE-2P: MATLAB -2

٠

			QUESTI	ON PATTERN				
Marks	Note Book	Viva	Mark of each Question Number of Questions to be attempted					
40	5	5	10	3				

*Selection of questions for practical examination shall solely be made on lottery basis in the presence of external examiners.

- 1. Etter, Delores M., Introduction to MATLAB for Engineers and Scientists, Prentice-Hall.
- 2. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Oxford University Press.
- 3. A. Gilat, MATLAB: an Introduction with Applications, New York: Wiley.
- 4. Fausett, Laurene, Applied Numerical Analysis Using MATLAB, Prentice-Hall.
- 5. J. P. William, Introduction to MATLAB for Engineers, New York: McGraw-Hill.
- 6. C. Lopez, MATLAB programming for numerical analysis, Apress; 2014.

MINOR (MI)

UG/I/MATH/3/MI-C2T : Algebra

Credits 04, Full Marks: 75

Course contents:

UNIT-1 (Classical Algebra):

Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications; Theory of equations: Relation between roots and coefficients, transformation of equation, Descartes rule of signs, cubic and biquadratic equation.; Inequality: The inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality.

UNIT-2 (Sets and Integers):

Equivalence relations, Equivalence Class; Functions, composition of functions, Invertible functions, one to one correspondence and cardinality of a set; Wellordering property of positive integers, division algorithm, divisibility and Euclidean algorithm; Congruence relation between integers; Principles of Mathematical induction; statement of Fundamental Theorem of Arithmetic.

UNIT-3 (System of Linear Equations):

Systems of linear equations; row reduction and echelon forms; vector equations; the matrix equation Ax=b; solution sets of linear systems; applications of linear systems; linear independence.

UNIT-4 (Linear Transformation and Eigenvalues):

Inverse of a matrix; Characterizations of invertible matrices; Definition of vector space of \mathbb{R}^n ; Subspaces of \mathbb{R}^n ; Dimension of subspaces of \mathbb{R}^n ; Rank of a matrix; Eigenvalues; Eigenvectors and characteristic equation of a matrix; Cayley-Hamilton theorem and its use in finding the inverse of a matrix; Introduction to linear transformations; Matrix of a linear transformation.

UG/I/MATH/3/MI-C2T : Algebra

٠

UNIT		QUESTION PATTERN				
		Mark of each question	Number of Questions to be			
		1	attempted			
		2	1			
UNIT – I (Classical Algebra)	22	5	2			
		10	1			
		2	5			
UNIT-II (Sets and Integers)	15	5	1			
		2	2			
UNIT-III (System of Linear Equations)	9	5	1			
		10	1			
LINIT IV (Linear Transformation and Eigenvalues)	14	2	2			
UNIT-IV (Linear Transformation and Eigenvalues)	14	10	1			

- 1. Titu Andreescu and Dorin Andrica, Complex Numbers from A to Z, Birkhauser, 2006.
- 2. Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, 3rd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2005.
- 3. David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 4. K.B. Dutta, Matrix and linear algebra.
- 5. K. Hoffman, R. Kunze, Linear algebra.
- 6. W.S. Burnstine and A.W. Panton, Theory of equations.
- 7. Sadhan Kumar Mapa, Higher Algebra Classical, Roman Books.
- 8. Sadhan Kumar Mapa, Higher Algebra Abstract and Linear, Roman Books.
- 9. R. M. Khan, Algebra Classical, Modern, Linear and Boolean, New Central Book Agency (P) Limited.
- 10. Rao, Bhimasankaram, Linear Algebra, Hindustan Book Agency.
- 11. S. Kumaresan, Linear Algebra: A Geometric Approach, PHI Learning Pvt. Ltd.
- 12. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, Pearson Education.
- 13. Vijay K. Khanna & S. K. Bhambri, A Course In Abstract Algebra, Vikas Publishing House Pvt Limited.
- 14. Joseph A. Gallian, Contemporary Abstract Algebra, CRC Press.
- 15. Sen, Ghosh, Mukhopadhyay, Topics in Abstract Algebra, University Press (India) Private Limited.
- 16. I. N. Herstein, Topics in algebra, Wiley.
- 17. Dummit, Foote, Abstract Algebra, Wiley India Pvt. Limited.